首页> 外文OA文献 >Recurrence-based time series analysis by means of complex network methods
【2h】

Recurrence-based time series analysis by means of complex network methods

机译:通过复杂网络方法进行基于递归的时间序列分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related to the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.
机译:复杂网络是现代复杂系统科学的重要范例,它可以定量评估由不同交互实体组成的系统的结构特性。在过去的几年中,在将基于网络的概念应用于动态分析时间序列的动态相关高阶统计属性方面,已经花费了大量的精力。值得注意的是,许多相应的方法与相空间中的递归概念密切相关。在本文中,我们回顾了基于复杂网络的时间序列分析的最新方法学进展,特别强调了基于递归图的方法。讨论并举例说明了各种方法的潜力和局限性,以举例说明动力学系统以及现实世界中的时间序列。示出了复杂的网络测度,以提供有关动力学系统的结构特征的信息,该信息与以时间序列分析的其他方法表征的那些特征互补,因此可以大大丰富从其他现有(线性以及非线性)方法中收集的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号